DBC File Format Documentation Version 01/2007

2007, Vector Informatik GmbH

1 Introduction

The DBC file describes the communication of a single CAN network. This information is
sufficient to monitor and analyze the network and to simulate nodes not physically
available (remaining bus simulation).

The DBC file can also be used to develop the communication software of an electronic
control unit which shall be part of the CAN network. The functional behavior of the ECU
is not addressed by the DBC file.

2 General Definitions

The following general elements are used in this documentation:

unsigned_integer: an unsigned integer

signed_integer: a signed integer

double: a double precision float number

char_string: an arbitrary string consisting of any
printable characters except double hyphens ('"').

C_identifier: a valid C_identifier. C_identifiers have to
start witham alpha character or an underscore
and may further consist of alpha-numeric,

characters and underscores.

C_identifier = (alpha_char | '_') {alpha_num char | '_'}

C-identifiers used in DBC files may have a length of up to 128 characters. To be
compatible to older tools the length should not exceed 32 characters. Other strings used
in DBC files may be of an arbitrary length.

The keywords used in DBC files o identify the type of an object are given in the following
table:

Keyword Object Type

BU Network Node

BO_ Message

SG_ Signal

EV_ Environment Variable

The syntax is described using the extended BNF notation (Backus-Naur-Format).

Symbol | Meaning

= A name on the left of the = is defined using the syntax on the right (syntax rule).

; The semicolon terminates a definition.

The vertical bar indicates an alternative.

[...] The definitions within brackets are optional (zero or one occurrence)

{...} The definitions within braces repeated (zero or multiple occurrences)

(-..) Parentheses define grouped elements

Text in hyphens has to appear as defined

(*...") Comment

3 Structure of the DBC File

The DBC file format has the following overall structure:

DBC_file =
version
new_symbols
bit_timing (*obsolete but required¥)
nodes
value tables
messages
message_transmitters
environment_variables
environment variables_data

signal_types

comments

attribute_definitions

sigtype_attr_list

attribute_defaults

attribute_values

value_descriptions

category definitions (*obsoletex*)
categories (*obsolete*)
filter (*obsolete*)

signal_type_refs
signal_groups

signal_extended_value_type_list

DBC files describing the basic communication of a CAN network include the following
sections:

¢ Bit_timing

This section is required but is normally empty.
® nodes

This section is required and defines the network nodes.
® messages

This section defines the messages and the signals.

The following sections aren't used in normal DBC files. They are defined here for the
sake of completeness only:

e signal_types

e gigtype attr list

® category definitions
® categories

e filter

® gcignal type refs

® signal_extended value_type list

DBC files that describe the CAN communication and don't define any additional data for
system or remaining bus simulations don't include environment variables.

4 Version and New Symbol Specification

The DBC files contain a header with the version and the new symbol entries. The
version either is empty or is a string used by CANdb editor.

version = ['VERSION' '' 'CANdb_version_string {}' "'];

new_symbols = ['_NS' ':' ['CM_'] ['BA_DEF_'] ['BA_'] ['VAL_']

['CAT_DEF_'] ['CAT_'] ['FILTER'] ['BA_DEF_DEF_'] ['EV_DATA ']

["ENVVAR_DATA_'] ['SGTYPE_'] ['SGTYPE_VAL_']

["BA_DEF_SGTYPE_'] ['BA_SGTYPE_'] ['SIG_TYPE_REF ']
["VAL_TABLE_'] ['SIG_GROUP_'] ['SIG_VALTYPE_']

["SIGTYPE _VALTYPE_'] ['BO_TX BU_'] ['BA_DEF_REL_ '] ['BA_REL_"']
["BA_DEF_DEF _REL_'] ['BU_SG_REL_'] ['BU_EV_REL_"']
['"BU_BO_REL_"'] 1;

5 Bit Timing Definition

The bit timing section defines the baud rate and the settings of the BTR registers of the

network. This section is obsolete and not used any more. Nevertheless the keyword

'BS_' must appear in the DBC file.

bit_timing = 'BS_:' [baudrate ':' BTR1 ',' BTR2]
baud rate = unsigned_integer
BTR1 = unsigned_integer

BTR2 unsigned_integer

6 Node Definitions
The node section defines the names of all participating nodes The names defined

in this section have to be unique within this section.

nodes = 'BU_:' {node_name}

node_name = C_identifier

7 Value Table Definitions

The value table section defines the global value tables. The value descriptions in value
tables define value encodings for signal raw values. In commonly used DBC files the
global value tables aren't used, but the value descriptions are defined for each signal

independently.
value_tables = {value_table}
value_table = 'VAL_TABLE_' value_table name {value_description
P
value table name = C _identifier
7.1

Value Descriptions (Value Encodings)

A value description defines a textual description for a single value. This value may either
be a signal raw value transferred on the bus or the value of an environment variable in a

remaining bus simulation.

value_description = double char_string

8 Message Definitions

The message section defines the names of all frames in the cluster as well as their
properties and the signals transferred on the frames.

messages = {message}

BO_ message_id message name message = '' message_size transmitter

{signal}

message_1id = unsigned_integer

The message's CAN-ID. The CAN-ID has to be unique within the DBC file. If the most
significant bit of the CAN-ID is set, the ID is an extended CAN ID. The extended CAN ID
can be determined by masking out the most significant bit with the mask OxCFFFFFFF.

message_name = C_identifier

The names defined in this section have to be unique within the set of messages.

message_size = unsigned_integer

The message_size specifies the size of the message in bytes.

transmitter = node_name | 'Vector_ XXX

The transmitter name specifies the name of the node transmitting the message.
The sender name has to be defined in the set of node names in the node section.

If the massage shall have no sender, the string 'vector__XXX' has to be given
here.

8.1 Signal Definitions

The message's signal section lists all signals placed on the message, their position in
the message's data field and their properties.

signal = 'SG_' signal_name multiplexer_ indicator ':' start_bit
'"|' signal_size '@' byte order value type '(' factor ',
offset ")' '"['" minimum '|' maximum ']' unit receiver {','
receiver}

signal_name = C_identifier

The names defined here have to be unique for the signals of a single message.

multiplexer_indicator = ' ' | 'M' | m multiplexer_switch_ value

The multiplexer indicator defines whether the signal is a normal signal, a multiplexer
switch for multiplexed signals, or a multiplexed signal. A 'M' (uppercase) character
defines the signal as the multiplexer switch. Only one signal within a single message
can be the multiplexer switch. A 'm' (lowercase) character followed by an unsigned
integer defines the signal as being multiplexed by the multiplexer switch. The
multiplexed signal is transferred in the message if the switch value of the multiplexer
signal is equal to its multiplexer_switch_value

start_bit = unsigned_integer

The start_bit value specifies the position of the signal within the data field of the frame.
For signals with byte order Intel (little endian) the position of the least-significant bit is
given. For signals with byte order Motorola (big endian) the position of the most
significant bit is given. The bits are counted in a saw-tooth manner.

The start_bit has to be in the range of 0 to (8 * message_size - 1).

signal_size = unsigned_integer
The signal_size specifies the size of the signal in bits

byte_order = '0' | '1" (* 0=1little endian, 1l=big endian ¥*)

The byte_format is O if the signal's byte order is Intel (little endian) or 1 if the byte order
is Motorola (big endian).

value_type = '+' | '-! (* +=unsigned, -=signed *)

The value_type defines the signal as being of type unsigned (-) or signed (-).

factor = double
offset double

The factor and offset define the linear conversion rule to convert the signals raw value
into the signal's physical value and vice versa:

physical_value = raw_value * factor + offset
raw_value = (physical_value - offset) / factor
As can be seen in the conversion rule formulas the factor must not be 0.

minimum = double
maximum = double

The minimum and maximum define the range of valid physical values of the signal.

unit = char_string

receiver = node_name | 'Vector__ XXX'

The receiver name specifies the receiver of the signal. The receiver name has to be
defined in the set of node names in the node section. If the signal shall have no receiver,
the string 'vector__ XXX' has to be given here.

Signals with value types 'float' and 'double' have additional entries in the
signal_valtype_list section.

signal_extended_value_type_list = 'SIG_VALTYPE_' message_id
signal_name signal_extended_value_type ';'

signal_extended_value_type = '0' | '1' | '2' | '3" (*
0=signed or unsigned integer, 1=32-bit IEEE-float, 2=64-
bit IEEE-double *)

8.2
Definition of Message Transmitters

The message transmitter section enables the definition of multiple transmitter nodes of a
single node. This is used to describe communication data for higher-layer protocols.
This is not used to define CAN layer-2 communication.

message_transmitters = {message_transmitter}
Message_transmitter = 'BO_TX_BU_' message_id ':' {}
transmitter ';'

8.3
Signal Value Descriptions (Value Encodings)

Signal value descriptions define encodings for specific signal raw values.

value_descriptions = { value_descriptions_for_signal |
value_descriptions_for_ env_var }

value_descriptions_for signal = 'VAL ' message_id signal_name
{ value_description } ';'

9 Environment Variable Definitions
In the environment variables section the environment variables for the usage in system
simulation and remaining bus simulation tools are defined.

environment variables = {environment variable}

environment_variable = 'EV_' env_var_name '' env_var_type '['

minimum '|' maximum ']' unit initial_value ev_id
access_type access_node {',' access_node } ';'
env_var name = C _identifier
env_var_type = '0' | '1' | '2 (* O=integer, 1l=float,

2=string *)

minimum = double

maximum = double

initial value = double

ev_id = unsigned_integer (* obsolete *)

access_type = 'DUMMY_NODE_VECTORO' | 'DUMMY_ NODE_VECTOR1' |
'DUMMY_ NODE_VECTOR2' | 'DUMMY_ NODE_VECTOR3' (*

O=unrestricted, l=read, 2=write, 3=readWrite *)

access_node = node_name | 'VECTOR_XXX'

The entries in the environment variables data section define the environments listed
here as being of the data type "Data". Environment variables of this type can store an
arbitrary binary data of the given length. The length is given in bytes.

environment_ variables_data = environment_ variable_data

environment variable data = 'ENVVAR_DATA ' env_var_name: '
data_size ';'

data_size = unsigned_integer

9.1 Environment Variable Value Descriptions
The value descriptions for environment variables provide textual representations of
specific values of the variable.

value_descriptions_for_env_var = 'VAL_' env_var_aname
{ value_description } ';'

10 Signal Type and Signal Group Definitions
Signal types are used to define the common properties of several signals. They are
normally not used in DBC files.

signal_types = {signal_type}

gsignal_type = 'SGTYPE_' signal_type_name ':' signal_size '@’
byte_order value_type ' (' factor ',' offsgset ')' '[!
minimum '|' maximum ']' unit default_value ','
value_ table ';'!

signal_type _name = C_identifier

default value = double

value table = wvalue_table name

signal_type refs = {signal_type_ref}

signal_type_ _ref = 'SGTYPE_ ' message_id signal_name ':'
signal_type_ _name ';'

Signal groups are used to define a group of signals within a messages, e.g. to de-fine
that the signals of a group have to be updated in common.

signal_groups = 'SIG_GROUP_' message_id signal_group_name
repetitions ':' { signal_name } ';'

signal_group_name = C_identifier

repetitions = unsigned_integer
11 Comment Definitions

The comment section contains the object comments. For each object having a
comment, an entry with the object's type identification is defined in this section.

comments = {comment}
comment = 'CM_' (char_string |
'BU_' node_name char_string |
'BO_' message_id char_string |
'SG_' message_id signal_name char_string |
'EV_' env_var_name char_string)

.1
I

12 User Defined Attribute Definitions

User defined attributes are a means to extend the object properties of the DBC file.
These additional attributes have to be defined using an attribute definition with an
attribute default value. For each object having a value defined for the attribute an

attribute value entry has to be defined. If no attribute value entry is defined for an object
the value of the object's attribute is the attribute's default.

12.1 Attribute Definitions

attribute definitions = { attribute_definition }

attribute_definition = 'BA _DEF ' object_type attribute_name
attribute_value_type ';'

object_type = '' | 'BU_' | 'BO_' | 'SG_' | 'EV_!'
attribute _name = '"' C_identifier '™
attribute_value_type = 'INT' signed_integer signed_integer |

'"HEX' signed_integer signed_integer |
'"FLOAT' double double |

'STRING' |

'"ENUM' [char_string {',' char_string}]

attribute_defaults = { attribute_default }

attribute_default = 'BA DEF_DEF ' attribute_name
attribute_value ';'
attribute_value = unsigned_integer | signed_integer | double |

char_string
12.2 Attribute Values

attribute values = { attribute_value_for_object }

attribute value for_object = 'BA ' attribute_name
(attribute_value |
'BU_' node_name attribute_value |
'"BO_' message_id attribute_value |
'SG_' message_id signal_name attribute_value |
'EV_' env_var_name attribute wvalue)

.1
I

13 Examples
VERSION "

NS__ :
NS_DESC__
CM__
BA_DEF

BA__

VAL__
CAT_DEF__
CAT__

FILTER
BA_DEF DEF__

EV_DATA__
ENVVAR_DATA__
SGTYPE__
SGTYPE_VAL__
BA_DEF_SGTYPE__
BA_SGTYPE__
SIG_TYPE_ REF_
VAL_TABLE__
SIG_GROUP__
SIG_VALTYPE__
SIGTYPE_VALTYPE _

BO_TX_ BU__
BA_DEF_REL__
BA_REL

BA_DEF_ DEF_REL__
BU_SG_REL
BU_EV_REL _
BU_BO_REL _

BS_:

BU_: Engine Gateway

BO_
SG_
SG_
SG_
SG_
SG_
SG_

CM__

EngineData 100: 8 Engine

PetrolLevel : 24 |8@l+ (1,0) [0]2
EngPower: 48|16@1l+ (0.01,0) [0 |
EngForce 32|16@l1+ (1,0) [0]0
IdleRunning : 23 |1el+ (1,0) [0]0
EngTemp: l16|7@l+ (2,-50) [-50
EngSpeed : 0|l6@l+ (1,0) [0]8

"CAN communication matrix

55] nilmn

150] "kw"

nn"
|15o ndegC"
000] "rpm"

Gateway
Gateway
Gateway
Gateway
Gateway
Gateway

for power train electronics

ER R R S S I I S I I R S S S I S I R I S

implemented:

VAL

100 0 Idle Running

turn lights,

"Running"

1

warning lights,

"Idle"

windows";

